Deep Kernel Learning

نویسندگان

  • Andrew Gordon Wilson
  • Zhiting Hu
  • Ruslan Salakhutdinov
  • Eric P. Xing
چکیده

We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the nonparametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel representation. These closed-form kernels can be used as drop-in replacements for standard kernels, with benefits in expressive power and scalability. We jointly learn the properties of these kernels through the marginal likelihood of a Gaussian process. Inference and learning cost O(n) for n training points, and predictions cost O(1) per test point. On a large and diverse collection of applications, including a dataset with 2 million examples, we show improved performance over scalable Gaussian processes with flexible kernel learning models, and stand-alone deep architectures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Variational Deep Kernel Learning

Deep kernel learning combines the non-parametric flexibility of kernel methods with the inductive biases of deep learning architectures. We propose a novel deep kernel learning model and stochastic variational inference procedure which generalizes deep kernel learning approaches to enable classification, multi-task learning, additive covariance structures, and stochastic gradient training. Spec...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

Semi-supervised deep kernel learning

Deep learning techniques have led to massive improvements in recent years, but large amounts of labeled data are typically required to learn these complex models. We present a semi-supervised approach for training deep models that combines the feature learning capabilities of neural networks with the probabilistic modeling of Gaussian processes and demonstrate that unlabeled data can significan...

متن کامل

Optimizing Kernel Machines using Deep Learning

Building highly non-linear and non-parametric models is central to several state-of-the-art machine learning systems. Kernel methods form an important class of techniques that induce a reproducing kernel Hilbert space (RKHS) for inferring non-linear models through the construction of similarity functions from data. These methods are particularly preferred in cases where the training data sizes ...

متن کامل

Multiple Kernel Learning with Hierarchical Feature Representations

In this paper, we suggest multiple kernel learning with hierarchical feature representations. Recently, deep learning represents excellent performance to extract hierarchical feature representations in unsupervised manner. However, since fine-tuning step of deep learning only considers global level of features for classification problems, it makes each layers hierarchical features intractable. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016